Tunable Ion Selectivity in Sub-Nanometer Diameter Carbon Nanotube Porins
نویسندگان
چکیده
منابع مشابه
Ion selectivity of gram-negative bacterial porins.
Twelve different porins from the gram-negative bacteria Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Yersinia pestis were reconstituted into lipid bilayer membranes. Most of the porins, except outer membrane protein P, formed large, water-filled, ion-permeable channels with a single-channel conductance between 1.5 and 6 nS in 1 M KCl. The ions used for probing the pore ...
متن کاملIon exclusion by sub-2-nm carbon nanotube pores.
Biological pores regulate the cellular traffic of a large variety of solutes, often with high selectivity and fast flow rates. These pores share several common structural features: the inner surface of the pore is frequently lined with hydrophobic residues, and the selectivity filter regions often contain charged functional groups. Hydrophobic, narrow-diameter carbon nanotubes can provide a sim...
متن کاملTunable nanometer electrode gaps by MeV ion irradiation.
We report the use of MeV ion-irradiation-induced plastic deformation of amorphous materials to fabricate electrodes with nanometer-sized gaps. Plastic deformation of the amorphous metal Pd(80)Si(20) is induced by 4.64 MeV O(2+) ion irradiation, allowing the complete closing of a sub-micrometer gap. We measure the evolving gap size in situ by monitoring the field emission current-voltage (I-V) c...
متن کاملReduction of single-walled carbon nanotube diameter to sub-nm via feedstock
Vertically aligned single-walled carbon nanotube arrays were synthesized from dip-coated binary Co/Mo catalyst by no-flow chemical vapor deposition from either pure ethanol or acetonitrile as carbon feedstock. By changing to acetonitrile the mean diameter was reduced from 2.1 nm to less than 1.0 nm despite using identically prepared catalyst. The demonstrated diameter control on flat substrates...
متن کاملSub-nanometer Displacement Sensing for the Nanogate – A Tunable Nanometer Gap
We have developed a sub-nanometer level displacement sensing system for a MEMS device called the Nanogate. The Nanogate is a tunable nanometer gap between ultra smooth surfaces of silicon and Pyrex. The separation between the surfaces can be as small as a few nanometers to as large as one micron. The Nanogate was created as a valve for precisely controlling very small gas and liquid flows, but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2017
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2016.11.855